Predictability is necessary for closed-loop visual feedback delay adaptation.

نویسندگان

  • Marieke Rohde
  • Loes C J van Dam
  • Marc O Ernst
چکیده

In case of delayed visual feedback during visuomotor tasks, like in some sluggish computer games, humans can modulate their behavior to compensate for the delay. However, opinions on the nature of this compensation diverge. Some studies suggest that humans adapt to feedback delays with lasting changes in motor behavior (aftereffects) and a recalibration of time perception. Other studies have shown little or no evidence for such semipermanent recalibration in the temporal domain. We hypothesize that predictability of the reference signal (target to be tracked) is necessary for semipermanent delay adaptation. To test this hypothesis, we trained participants with a 200 ms visual feedback delay in a visually guided manual tracking task, varying the predictability of the reference signal between conditions, but keeping reference motion and feedback delay constant. In Experiment 1, we focused on motor behavior. Only training in the predictable condition brings about all of the adaptive changes and aftereffects expected from delay adaptation. In Experiment 2, we used a synchronization task to investigate perceived simultaneity (perceptuomotor learning). Supporting the hypothesis, participants recalibrated subjective visuomotor simultaneity only when trained in the predictable condition. Such a shift in perceived simultaneity was also observed in Experiment 3, using an interval estimation task. These results show that delay adaptation in motor control can modulate the perceived temporal alignment of vision and kinesthetically sensed movement. The coadaptation of motor prediction and target prediction (reference extrapolation) seems necessary for such genuine delay adaptation. This offers an explanation for divergent results in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of Flexible Link Robot using a Closed Loop Input-Shaping Approach

This paper is has addressed the Single Flexible Link Robot. The dynamical model is derived using Euler-Lagrange equation and then a proper controller is designed to suppress a  vibration based-on Input-Shaping (IS) method. But, IS control method is an open loop strategy. Due to the weakness of open loop control systems, a closed loop IS control system is proposed. The achieved closed loop c...

متن کامل

ADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS

This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...

متن کامل

Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay

In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...

متن کامل

Adaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay

In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control  method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...

متن کامل

Dynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach

This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2014